Image, Structure, Fold

I am pleased to distribute an essay titled, Image, Structure, Fold, by Jordan Martins. Here is link to a PDF version, also there are printed hard copies available at the exhibition closing event.

A Deliberately Non-Straight Line

Closing reception:
Sunday, June 30, 2019 3:30-5pm
Compound Yellow
244 Lake St. Oak Park, IL 60302

Booklet design by Erica Hess.

Booklet design by Erica Hess.

I will be teaching at Arrowmont!

4o yard bold and Weaving Lab coat

4o yard bold and Weaving Lab coat

In this workshop students create woven cloth that can be made into usable goods. You will discover how time, labor, production, meditation, pattern and rhythm is needed to produce your work. Participants will conceptualize how cloth can carry meaning, including the passage of time and meditation. Class readings, discussions and presentations include historical and contemporary examples that will help form the context of your production and process. Open to all skill levels.

Weaving Lab will be hitting the road this summer! Chicago, Demark and Norway!

Weaving Lab will be hitting the road this summer (perhaps not in a sweet trailer like this but somehow we will be moving)! First we will visit @compoundyellow in the month of June- details to come

Then, in August we will be heading to Denmark and Norway!  If you know of a site that would like to host the lab, let us know! 

Speculative Weaving is the term I have coined to encompass an approach that bridges the divide between craft-based traditions and conceptual work wherein weaving serves as the nucleus of community engagement and the catalyst for broad interdisciplinary explorations. Participants are encouraged to approach the act weaving as an end in itself, while also considering the act in relation to conceptual domains of time, rhythm, meditation, and materiality.

Second photo shows the Hour Towel project. —Each participant was asked to weave for 1 hour, creating a physical manifestation of time and labor. 

Third Photo shows the Album Towel.—Each participant was asked to select an album, play side A while weaving a right-facing twill, and then turn the record over to weaving side B and a left facing twill.  This project prompts the  weaver to consider the connection between the loom and music.

Fourth photo shows the Weaving Lab as it looked at the Wisconsin Institute for Discovery in 2017.

Woven Together: The Influence of Sherri Smith

Fiber artist Sherri Smith’s influence has reached near and far thanks to her extensive exhibition history, publications, and 40 years of teaching at the University of Michigan’s Penny W. Stamps School of Art and Design. This complementary exhibition highlights the work of 14 artists who studied under Sherri Smith at the University of Michigan. The exhibition includes unique examples of contemporary fiber and fiber-inspired works from artists working across North America. Weaving, sculpture, video, printed textiles, and mixed media assemblages will be on display.

Image: Marianne Fairbanks,  The Heart of Being 1,  2018

Image: Marianne Fairbanks, The Heart of Being 1, 2018

Exhibiting Artists:

David Brackett, Deborah Carlson, Linda Duvall, Marianne Fairbanks, Geary Jones, Mary Ann Jordan, Janice Lessman-Moss, Sue Moran, Robin Muller, Kate Pocrass, Marianetta Porter, Denise Samuels, Jenny Schu, and Sheri Simons.

Begins -  Saturday, August 25, 2018 - 2:00 PM

Ends  - Saturday, November 17, 2018 - 5:00 PM




Solo Exhibition: More Air-like than Water

In  More Air-like than Water , Marianne Fairbanks presents weavings, paintings, photographs, and sculptures in bold patterns and vibrant palettes--works that test the tensions between pliability and rigidity, micro and macro, material and immaterial.

In More Air-like than Water, Marianne Fairbanks presents weavings, paintings, photographs, and sculptures in bold patterns and vibrant palettes--works that test the tensions between pliability and rigidity, micro and macro, material and immaterial.


]Opening: September 29, 2018 6-9pm

Closing Tea: October 27, 2018 1-4pm

And by appointment: 312-371-9293

Living Room -- 1530 W. Superior St. --  Chicago, IL 60642 



Teaching at Ox-Bow!

This summer I will be teaching a class called Speculative Weaving at Ox-bow. I am so excited!

Also excited because they used my work for the cover of the course catalogue! 

Also excited because they used my work for the cover of the course catalogue! 

Here is more about the class...

Speculative Weaving, August 12-18, 2018

Weaving has often been associated with themes of time, rhythm, meditation, and materiality and for this workshop we weave small studies in response to these prompts. Students will be encouraged to consider the act of weaving as an end in itself, conceptualizing process, while also learning technical skills including tablet weaving, inkle weaving, finger weaving and pattern drafting. Woven studies will be developed on small portable looms and from there students will consider how they might invent new looms structures, weave into site-specific locations and create interactive projects. Concepts and theories will be introduced through readings, slide presentations and discussions that will provide the direction and inspiration for each student to develop their own inquiries and inventions.


Fiber Arts Designer Developing Fabric That Can Harness Sun's Energy

Cellphones, laptops, battery-operated flashlights, our electronics are getting smaller and our need for energy is getting larger.  So what if there was a way to take those items and mix them with your everyday routine to create an eco-friendly way to recharge them?  That’s the bright idea of Marianne Fairbanks who has two degrees in fiber arts. She classifies herself as a textile nerd and she is also an Assistant Professor of Textiles and Design at the University of Wisconsin in Madison. Fairbanks says, “I love teaching this because everyone has a relationship to cloth. It's the first thing you touch as a baby. You are wrapped in a blanket. Every culture weaves. Every culture dyes. Every culture creates clothing to shelter themselves.” 

Fairbanks is on the cutting edge of an eco-friendly solution-based design revolution. She is trying to crack the code of renewable energy, making it accessible, and weaving it into our everyday lives. Back in 2003, she first infused art with a flexible solar plane to create a hand bag that could harness the sun’s energy to recharge cellphones or other small electronics.  Fairbanks said, “We showed it around a bit and people said, ‘Well, where can I buy one?’ And we were like what do you mean? This is just an idea. This is just a prototype.”

Fairbanks came to the University of Wisconsin, she met a chemist by the name of Trisha Andrews. Andrews had made a solar cell on a piece of paper and if you think about it, paper's actually quite similar to a textile. Fairbanks had a new idea to make a weave so the solar cells and fabric become one.

Let's say someone need to charge tons of batteries in the military or at a refugee camp, here is your bolt of cloth, unfurl it on the field and you have a light-weight, immediate power source where you can plug in cellphones, flashlights or medical equipment. The ideas are endless when fabric is used as the actual solar cell. “I mean let's face it. Our demand for energy isn't going to go away,” Fairbanks said.

The next new thing might be a Wisconsin Textile movement along the lines of buy local.  Fairbanks has had the opportunity to write a grant to activate a local textile and clothing culture here in Wisconsin. She is now working with an engineer and hopes to create a statewide textile network.  She is also excited about an organization called Fiber Shed. It looks around at what is happening to create sustainable textiles that can contribute to buying local. Fairbanks explains it this way, “So, we have taken the local food movement and everyone just sort of understands that now. Look at the popularity of the farmers market. It’s amazing. I guess our goal with identifying who are the farmers, who are the growers, who can process the material, who can weave the cloth, who can make the clothing, it is to try to create this textile loop in Wisconsin.”   At this point, it just another idea, another seed planted to create a new economy around local and sustainable textiles and clothing.

Related Links:

Tags:design / textiles / fabric / solar / energy



Joel Waldinger is a reporter for the "Wisconsin Life" project and considers a sunset over the “big island” on Manson Lake to be a perfect ending to a day of fishing and fun in the Northwoods. 

Public Talk in Asheville NC at CCCD!

Center for Craft Creativity and Design

Marianne Fairbanks Artist Talk
Thursday, August 3, 6:30 pm

work table, 2016

work table, 2016

Impractical Weaving Suggestions

Fairbanks’s will present her work that explores structures and effects embedded in the intersections of cloth that, because of their small scale, often go unseen and unconsidered. By inflating the scale, embedded layers of labor and sophisticated math-based systems are exposed. Her wall weaving installations made out of fluorescent flagging tape display the magnified structures in a radical palette of neon plastic material that feels electric and loud. Through drawings and jacquard weavings, Fairbanks poses questions around value, labor, and time more quietly. Fairbanks’s approach to color, process, and material offers a fresh and witty point of entry into the dialogue and tension that persists between high vs low, and industrial vs handmade. 

As well, Fairbanks will present her newest social practice research called Weaving Lab: Plain Cloth Productions. The lab serves as a site of textile production, exploring the creation of simple cloth on domestic floor looms. The public is invited to come learn to weave and contribute their time to experiments around time, rhythm, process, production, meditation, and pattern structures. While there are no hard answers produced in the lab, the woven cloth serves as poetic evidence of communal production.


Tie Up, Draw Down at the Center for Craft Creativity and Design

90% of weaving happens before thread ever touches the loom. Indeed, the accumulation of warp over weft is only one of many actions, including drafting/design, winding, measuring, looping, counting, dyeing, knotting, setting tension, and others. These actions formed the inspiration and starting point for this exhibition.

Tie Up, Draw Down explores weaving as a source for experimentation across media, genres, concept, and scale. Of the fifteen contemporary artists included in this exhibition, many hybridize weaving technologies, weave “the wrong way,” or adapt and innovate weaving processes to encompass new media. Others do not weave at all, but find a rich avenue of inquiry within aspects or stages of weaving’s complex field.

Artists include: Polly ApfelbaumJoell BaxterJen BervinFrancesca CaponeLiz CollinsMarianne FairbanksDel HarrowSheila HicksLoVidJohn Paul MorabitoDanielle MysliwiecMeghan PriceMolly SmithLaurel Sparks, and Margo Wolowiec.

Tie Up, Draw Down is curated by The Center for Craft, Creativity & Design’s (CCCD) 2017 Curatorial Fellows Natalie Campbell and Carissa Carman and organized by CCCD.

The CCCD Curatorial Fellowship is made possible by the John & Robyn Horn Foundation. CCCD is supported in part by a grant from the N.C. Arts Council, a division of the Department of Natural and Cultural Resources. Additional support for Benchspace programming provided by Sara and Bill Morgan.

Read More

Solo show at the Institute for Labor Generosity Workers and Uniforms

Directional Twills , 2017

Directional Twills, 2017

Solo Show: Overtime

Institute for Labor Generosity Workers and Uniforms

Opening Reception: Saturday, April 8, 2017 --6:00-9:00pm

Marianne Fairbanks’s work in Overtime engages the binary logic of weaving, both metaphorically and materially, to question conventional value systems and political polarities.  Thinking through math, pattern, and language, Fairbanks presents bright plastic tape illustrations, screen printed posters, and a series of hand-woven tea towels. The work explores the relationship between time and production, probes the oppositions of binary language, and expands embedded mathematical patterns.  Both poetic and playful, the work encourages a deep engagement with our material world.

322 Elm Ave, Long Beach CA

I will be teaching at Haystack this summer, come join me!

The name of my course is Fiber Foundations and Futures

Beginning with investigations of textile structures, we will work with a range of experimental materials and digital technologies to translate the logic and form of those structures into new 2-D and 3-D work. For inspiration we will look to many pre-industrial textile technologies found in objects such as nets, armor, rafts, rope, bridges, fences, sails, shelters, filters, and kites.  We will cover techniques such as coiling, felting, weaving, netting, knitting, and crochet.  Once students learn how to create these structures by hand they will then use this embodied knowledge to interpret the process through the tools and technology in the Fab Lab including the laser cutter, CNC router, and 3-D printer.  Students will expand beyond traditional materials and processes to invent projects, tools and textiles for a new interdisciplinary and collaborative fiber future.

JUNE 11-23


A Chemist and a Designer Team Up to Weave Solar Panels Into Fabric

For years, fabric designer Marianne Fairbanks made solar-charged handbags. Her company, Noon Solar, was geared toward the high-end, urban-based fashion market and, at its peak, was selling in 30 stores in the United States and Canada. While Noon Solar closed its doors in 2010, Fairbanks, who joined the University of Wisconsin-Madison in 2014 as an assistant professor in the school of human ecology, was still intrigued with the concept of solar design.

Once she arrived on campus, Fairbanks discovered Trisha Andrew, an assistant professor of organic chemistry now at the University of Massachusetts-Amherst. Andrew’s specialty is in developing low-cost, lightweight solar cells. Specifically, she had created an organic dye-based solar cell on paper.

The collaboration between the two began with an innocent phone call.

“I asked Trish,” says Fairbanks, “if we could apply her idea that she’d used on paper onto a textile. And that’s how our project started.”

“The way that today’s wearable electronics are created is a simple process of packaging,” says Andrew. “A Fitbit or an Apple watch—they all have a PCB [printed circuit board], which holds the little electronic circuit. It allows you to ‘wear’ that device, but to me that's not real wearable electronics. That’s only something that is patched onto another material.”

Their shared passion for solar innovation now has them working towards finalizing the design of a solar textile. While Fairbanks’s plans are to ultimately cultivate a finished fabric, Andrew hopes to take that fabric and actually manufacture marketable products. Andrew envisions fabric panels for heated car seats or even small solar panels sewn into a larger garment.

Historically, solar panels have been made out of glass or plastic—materials that are hard and can be destroyed fairly easily. Researchers first turned to textiles in 2001 in an effort to create a solar component that is pliable, breathable and flexible. Since then, solar fabrics have been incorporated into stadium covers, carports and even wearable art, but Andrew and Fairbanks claim that their fabric is superior to other groups’ in breathability, strength and density. Not only have they figured out how to utilize their process on any type of fabric, but because this is a collaboration between scientist and designer, they also have the ability to broaden the scope of solar textiles within a more commercial, consumer-friendly market.

“The biggest problem is that textiles, from an engineering and chemistry concern, are that they're incredibly rough,” says Andrew. “They're a three dimensional substrate; they're not flat.”

Their solar cell consists of one layer of fabric that has four coats of different polymers. The first coat is Poly(3,4-ethylenedioxythiophene), or “PEDOT”, which Andrew and her post-doc research assistant, Lushuai Zhang, discovered worked incredibly well to increase a fabric’s conductivity. The other three coats are various semiconducting dyes, such as blue dye copper phthalocyanine, that act as the photoactive layers or light absorbers for the cell. Andrew and Fairbanks have achieved repeated success with the first two coats but are still working out the kinks for coats three and four.

Fabrics, as opposed to smooth and shiny glass or plastic, are porous, which makes evenly coating them with specific polymers a bit tricky. If you consider how a piece of fabric is created, it’s made up of multiple fibers twisted together. Each fiber will have a different level of roughness, which, from a chemistry standpoint, includes multiple light scales (nanometer, micrometer, etc.).

“In order to actually put the electronically conductive polymer over that surface, you have to traverse all of these different light scales,” says Andrew. “And that’s hard.”

To get around this issue, Andrew decided to try Chemical Vapor Deposition (CVD), a technique typically reserved for inorganic experiments that use hard substrates like metals or plastics. By taking advantage of the mass transport properties, or the general physical laws governing the movement of mass from one point to another, Andrew can uniformly coat any arbitrary substance, including fabric, because the nanomaterials used don’t care about the surface of the substrate. Even better, she applies the PEDOT within a vacuum.

The next step was determining which fabrics would work best.

“I brought over silk, wool, nylon—all of these different substrates,” says Fairbanks, noting that the materials were standard samples from Jo-Ann Fabrics. To test the fabrics, they coated each one with PEDOT and other semiconductor materials, then hooked them up to electrode clips and wires. They applied voltage and measured the output current for each swatch.

“Some of them would warm up and take the energy and translate it into heat; some of them dispensed the heat, yet conducted much more easily,” says Fairbanks.

“The conductivity of the PEDOT was completely determined by the underlying textiles,” adds Andrew. “If we had a porous textile, we got conductivity higher than the copper. If we had a very fuzzy textile, like fuzzy cotton jersey or wool felt, or very tightly woven textiles, then the conductivity of the PEDOT was really bad.”

Based upon their initial experiments, Andrew proposed a glove prototype to take advantage of the various properties of each fabric. Essentially, their design used specific textiles to conduct electricity to warm different parts of the glove. The prototype is made out of pineapple fiber, which is very conductive and absorbs the heat, and cotton, which acts as a brake to keep the heat contained between the layers. This is the first item the duo has created that they hope to actually market.

“What’s really fascinating about this collaboration,” says Fairbanks, “is that we didn’t come together to create this glove, specifically. It was just one of these other side outputs of the original research.”

Through the process of research and development, Andrew and Fairbanks have experimented beyond their initial solar textile idea, which is still a work in progress, to another solar innovation that involves coating each individual fiber with PEDOT and weaving the pieces together to form the working circuit. This completely original fabric works like a triboelectric device, translating mechanical motion into power. The duo has constructed 10-by-10-inch swatches of different weave patterns, with the most efficient generating about 400 milliwatts of power, by simply waving it around like a little flag.

“If you actually made a standard curtain for a house, something 4-by-4-feet, then that is more than enough power to charge your smartphone,” says Andrew, noting that the material would only need a breeze coming through the window to generate that level of power.

Andrew and Fairbanks are working with several companies within a variety of industries that are interested in incorporating these ideas into future products. Andrew, for example, has an Air Force grant aimed at producing solar tents for soldier use and has outdoor gear in development with Patagonia.

“I get really excited, because textiles are portable and lightweight,” says Fairbanks. “They could be deployed in the wilderness for a hunter or in the field for medical or military applications in a way that big clunky solar panels never could be.”

Fairbanks sees boundless potential. The solar textile, she says, could be used for hundreds of future applications, including umbrellas, awnings and refugee shelters, while the triboelectric fabric could be used in housewares or athletic gear, such as running shirts and tennis shoes—anything that requires motion since that’s how it generates power.

“I’m excited to get it 100 percent functioning and out into the world,” says Fairbanks.


Catching Up: Marianne Fairbanks' Weaving Lab

                Gayle Worland, August 15, 2016

                Gayle Worland, August 15, 2016

M.P. King--State Journal  Christie Suchomel, a recent grad of UW-Madison's textile and fashion design program from Sun Prairie works in the Weaving Lab set up at the Wisconsin Institutes for Discovery for the summer by Marianne Fairbanks. 

M.P. King--State Journal

Christie Suchomel, a recent grad of UW-Madison's textile and fashion design program from Sun Prairie works in the Weaving Lab set up at the Wisconsin Institutes for Discovery for the summer by Marianne Fairbanks. 

Marianne Fairbanks is still working on solar textiles, a project she and her collaborator hope will lead to the mass production of everyday cloth that collects and stores solar power.

In the meantime, she is looking for worn-out blue jeans.

Fairbanks, assistant professor in the School of Human Ecology’s design studies program at University of Wisconsin-Madison, is creator of the Weaving Lab that’s taken up residency this summer in the Wisconsin Institutes for Discovery building, 330 N. Orchard St.

The Weaving Lab ( is a drop-in, hands-on exploration of weaving, open to the public from 9 a.m. to 4 p.m. Monday through Thursday through Aug. 25. A free, public closing reception will be held that evening, from 4 to 6 p.m.

“I wanted to call it the Weaving Lab because I like the idea of the image that it’s a lab where we’re asking different questions around weaving,” said Fairbanks, who has long been interested in the intersection between art and science. “This idea of not only exposing people to the process, but also asking questions about the process that I just haven’t had time to ask, or to answer for that matter.”

Fairbanks also continues to work with former UW-Madison chemist Trisha Andrew on concepts for creating solar power-collecting textiles. They are also now exploring triboelectric charging, where certain materials can be electrically charged through friction with a different material. (Think, Fairbanks notes, of the potential of a runner’s triboelectric charging shirt, where the runner rubs her arms against her torso as she moves.)

Fairbanks kicked off her collaboration with Andrew just after the textile artist got her job at UW-Madison in 2014. Previously, Fairbanks had run a company producing handbags that could store solar power. She was profiled by the Wisconsin State Journal in January.

“One of the things that’s a little disappointing is that Trisha has now taken a job at Amherst (College in Massachusetts),” Fairbanks said. “We intend to continue the research because it’s gotten pretty far, but she will no longer be at UW. We’re at a place where it doesn’t make sense to stop.”

In the Weaving Lab in the Discovery building, Fairbanks has set up several looms — including one that is meant to explore how long it takes to make an entire bolt of cloth by hand. Another measures how productive a weaver can be in an hour. A third is meant to be a “meditational” loom, to allow visitors to simply enjoy the rhythm and repetition of weaving.

“I like the idea of one loom where you don’t have to worry about time. You just sit there and weave,” said Fairbanks, who has received donations of worn-out blue jeans to be cut up for makingrag rugs and meditation mats.

“I think the most interesting part has been just how interested people are,” she said.

“Being in the WID has been awesome, because just the amount of traffic that pops in is really great, from young people to researchers to just people from across campus. In that sense, I think it’s really lived up to what I hoped it would be.”

The Warp and Weft of Discovery

The Weaving Lab will be open Monday - Thursday from 9am - 4pm through August 25th.

There is a new field of inquiry at the Wisconsin Institute for Discovery this summer. The materials in this lab aren’t bio or nano; they are muslin, linen and cotton.  There is warp but it has very little if anything to do with speed.  As a matter of fact, the pace in the room is measured and rhythmic. In spite of these differences, the researchers are every bit as intent on the process and product as any wet lab researcher in the building.


Marianne Fairbanks, Assistant Professor in the Design Studies Department at the UW–Madison School of Human Ecology (SoHE), along with graduate student, Liz Kozik, and undergraduate student, Christie Suchomel have temporarily converted Lynda Barry’s Image Lab to the Weaving Lab: Plain Cloth Productions. This lab of five looms warped with simple yarns will serve as a site of textile production and exploration of the creation of simple cloth.

Fairbanks is interested in studying pre and post-industrial textile technology. The reality that the floor loom is all but defunct led her to consider the southern traditions of weaving. In the 1880’s, The Fireside Industries, a craft school at Berea College, encouraged women to weave from home and sell their items through Berea College’s networks. Earnings were credited toward their tuition. It was a way for young women to “earn as they learn”. Fairbanks finds production in relationship to education quite interesting. The idea of putting the floor loom to work as a site of production and studying production at a local scale is the theme of the Weaving Lab. 

But weaving’s history goes back much further: weaving is one of the earth’s oldest technologies. Evidence of the practice has been found in the Neolithic Era and recent archeological discoveries point to a possible Paleolithic origin.

Weaving is also connected to other modern technologies in unexpected ways. In the early 19th century, Joseph Marie Jacquard, a French weaver and merchant, developed a loom controlled by a series of punched cards to direct the warp (vertical) yarns in a loom to go up or down for each (horizontal) row. The binary concepts were eventually applied to programmable machines, and the earliest IBM compiler was founded on this technique.

No stranger to technology, Fairbanks is excited to be among WID researchers. She recently shared an exhibition at SoHE with the Living Environment Lab’sKevin Ponto. Currently she is also collaborating with chemist Trisha Andrew to create a solar textile. Being located in the Discovery Building is really important to Fairbanks because she wants passerby traffic, scientists walking in the door, and school groups coming through. She finds the contrast of the building’s cool glass and limestone makes the warm wooden looms look even more archaic than their actual age.

Through August 25th while the Weaving Lab is in residence, Fairbanks intends to explore five main questions.

How many yards of plain weave cotton cloth can be woven on a floor loom?

Can you weave an entire bolt of cloth on a floor loom? The lab will study time, efficiency, and labor. They will question the loom as a tool, the weaver as a site of production, and the weaver’s body in relationship to the loom.

How long does it take to weave a yard of simple cloth for an amateur or expert?

The weaving lab currently has a display of five “hour towels”. Suchomel created each of them within a sixty-minute timespan but under varying conditions: listening to different kinds of music, being interrupted, or having to reload the shuttle with more yarn. All the towels are different lengths and the assorted conditions are documented on the front of each one. As different people use the looms, the diverse collection is expected to grow.

Going forward, Fairbanks plans to create “album towels”. “We’re going to take albums that are about an hour long and assign each towel to that album”, Fairbanks said. “I feel like it (music and production) is so connected. I want to now be more specific about it. Being old school, I like the idea of [listening to] an album from beginning to end.”

What meditational value does the act of weaving provide when not tied to production but just as an act of creation?

There is a rhythm to weaving that lends itself to meditation. Fairbanks describes it as ‘you get into a sort of rhythm or a flow and you forget’. She wants to discover what the mind is able to think about when it’s in a sequence of ‘doing’.

How can we explore and invent weave patterns based in math structures?

Fairbanks really wants to reveal the numbers and the structures that are involved in weaving. The loom is a binary instrument. It the warp is either up or down. She wants to create connections between people entering data and thinking about the binary codes that they are entering.

Can simple garments be woven that need little sewing and create little waste? 

The lab will explore the production values of weaving garments with built in neck holes, buttonholes or selvedges to create the least amount of waste.

“Let’s keep our hands busy in a different way – have them making.”

-Marianne Fairbanks

The Weaving Lab will host an open house tonight from 4pm until 6pm in the Image Lab in the northwest corner of the Discovery Building. Although people are encouraged to stop by the Lab whenever the door is open, it will be open to the public every Monday through Thursday from 9am-4pm with a daily program at 1pm demonstrating how a floor loom works and weaving on the demo warp. After the program, visitors are welcome to volunteer to be a production weaver for the lab. There is a sign up sheet and lab members are happy to provide more information or a volunteer may contact Marianne Fairbanks directly. The volunteers will not create new projects to take home, but will add to the research already being done.

As a memento, all visitors will be given a small tapestry loom Fairbanks created on a laser cutter. The kit includes the loom, a needle for weaving and a comb for pushing the rows together (to “beat in the weft” as weavers would say). She created two varieties: one the shape and size of a postcard and another the shape and size of an iPhone. Fairbanks explained, “I thought this is something we’re very familiar with having in our hands, let’s keep our hands busy in a different way – have them making.”Next

Patricia Pointer

Futurescan 3: Intersecting Identities

The Glasgow School of Art, Uk

I just got back from this great conference in Scotland. It was such a pleasure to present to such amazing participants and the keynotes were just wonderful. 

Carole Collet

Professor in Design for Sustainable Futures, Central Saint Martins, University of the Arts London

Noa Raviv

Fashion Designer & Artist, Creative Director Noa Raviv

Paul Simmons

Designer & Owner, Timorous Beasties

Reiko Sudo

Professor Tokyo Zokei University, Design Director & Owner, Nuno Corporation